

### RÉPARTITION DE L'AIR

# Régulateur de débit **VR1-N**



# Sommaire

### Régulateur de débit VR1-N

### **Sommaire**

| 1 | Aperçu des produits                                                                                                                                                                                                                | 3      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2 | Caractéristiques produit                                                                                                                                                                                                           | 4      |
| 3 | Description du produit                                                                                                                                                                                                             | 6      |
|   | <ul> <li>3.1 Domaine d'application</li> <li>3.2 Fonctionnement</li> <li>3.3 Accessoires</li> </ul>                                                                                                                                 | 7<br>7 |
|   | 3.3.1 Coque isolante avec revêtement en tôle                                                                                                                                                                                       |        |
| 4 | Dimensionnement rapide                                                                                                                                                                                                             | 8      |
| 5 | Montage                                                                                                                                                                                                                            | 9      |
| į | 5.1 Distance avec les points de défaillance                                                                                                                                                                                        | 9      |
| 6 | Caractéristiques techniques                                                                                                                                                                                                        | 10     |
| ( | 6.1 Dimensions 6.1.1 Silencieux circulaire SRC 6.2 Poids 6.3 Niveau de puissance acoustique (bruit d'écoulement) 6.4 Niveau de puissance acoustique (bruit rayonné) 6.5 Réglage de la valeur prescrite 6.5.1 Manuel 6.5.2 Motorisé |        |
| 7 | Texte d'appel d'offres                                                                                                                                                                                                             | 18     |
| 8 | Wildeboer facilite vos démarches                                                                                                                                                                                                   | 19     |
| 8 | 8.1 Configurateur Wildeboer                                                                                                                                                                                                        |        |
| 8 | <ul><li>8.2 Logiciel de dimensionnement WiDim</li><li>8.3 Documents en ligne</li></ul>                                                                                                                                             |        |

### Gamme de produits :

### Domaines d'application des régulateurs et limiteurs de débit circulaires

| Description                     | VR1-N                                       | VR1                                        | VRL1                                      | VRE1                                       | VRup / VRpro                               |
|---------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| Principe de fonctionnement      | Régulateur<br>mécanique                     | Régulateur<br>mécanique                    | Limiteur<br>mécanique                     | Régulateur<br>électronique                 | Régulateur<br>électronique                 |
| Différence de pression          | 30 600 Pa                                   | 50 1 000 Pa                                | 30 300 Pa                                 | 20 1 000 Pa                                | 5 1 000 Pa                                 |
| Plage de débit<br>volumique     | 30 2 300 m³/h                               | 50 3 100 m³/h                              | 13 1 060 m³/h                             | 34 5 430 m³/h                              | 42 5 430 m³/h                              |
| Diamètre nominal                | DN 80 DN 315                                | DN 80 DN 315                               | DN 80 DN 250                              | DN 100 DN 400                              | DN 100 DN 400                              |
| Vitesse d'écoulement            | 1,1 12,2 m/s                                | 2,1 15,5 m/s                               | 0,8 6 m/s                                 | 1,2 12 m/s                                 | 1,5 12 m/s                                 |
| Précision de réglage            | env. ±5 % du<br>débit volumique<br>nominal* | ±5 ±10 % du<br>débit volumique<br>prescrit | ±5 ±10 % du<br>débit volumique<br>nominal | ±5 ±15 % du<br>débit volumique<br>prescrit | ±5 ±20 % du<br>débit volumique<br>prescrit |
| Température de fonctionnement   | -20 +70 °C,<br>temporairement 90 °C         | -20 +70 °C,<br>temporairement 90 °C        | +10 +50 °C                                | +5 +60 °C                                  | 0 +50 °C                                   |
| Informations<br>complémentaires | Dans le présent<br>document                 | LIEN                                       | LIEN                                      | LIEN                                       | LIEN                                       |

<sup>\*</sup> ou ±10 % du débit volumique prescrit (en fonction du plus grand écart)

### 1 Aperçu des produits

Le régulateur de débit VR1-N est un régulateur automatique mécanique sans entretien ni énergie auxiliaire destiné aux conduites d'air frais et d'air vicié au débit volumique constant. Il est particulièrement utilisé pour les faibles vitesses d'écoulement et les pressions variables afin de maintenir un débit volumique constant aligné sur la valeur prescrite paramétrée. Le réglage s'effectue via un dispositif manuel avec aiguille de réglage, graduation et dispositif d'arrêt. En option, le VR1-N peut être équipé d'un entraînement de 24 V CA/CC ou 230 V CA pour un réglage motorisé de la valeur prescrite pour les applications à débit volumique variable.



- · Précision de réglage maximale à pressions variables faibles
- · Préréglage en usine du débit volumique prescrit
- Réglable sur place
- Montage indépendant de la position
- Modèle sans entretien
- Dimensions DN 80 à DN 315
- Étanchéité du boîtier : classe C selon DIN EN 1751
   Plage de débit volumique : 30 ... 2 300 m³/h
- Plage de pression : 30 ... 600 Pa
  Vitesse d'écoulement : 1,1 ... 12,2 m/s
- Plage de température : -20 ... +70 °C, temporairement 90 °C
- Certification hygiène :
   VDI 6022-1, VDI 3803-1, DIN 1946-4, DIN EN 16798-3, SWKI VA104-01,
   SWKI VA105-01, ÖNORM H6020, ÖNORM H6021
- Déclaration environnementale de produit : EPD-WIL-20150036-ICA-DE
- Options
  - Transmission réversible avec commande à 2 et 3 points pour le réglage sur deux valeurs prescrites de débit volumique, 230 V CA ou 24 V CA/CC
  - Transmission réversible réglable en permanence pour le réglage sur des valeurs prescrites de débit volumique au choix, 24 V CA/CC
- · Coque isolante avec revêtement en tôle
- Silencieux circulaire SRC aux longueurs : 600 mm et 900 mm
- · Joints à lèvre de chaque côté

### 2 Caractéristiques produit



## 1 Dimensions

| Diamètre nominal [DN] |     |     |     |     |     |     |  |
|-----------------------|-----|-----|-----|-----|-----|-----|--|
| 80                    | 100 | 125 | 160 | 200 | 250 | 315 |  |

# 2 Joint à lèvre



Pour le raccordement hermétique aux conduites d'aération Accessoire en option pré-monté en usine ou à monter sur place

### 3 Réglage de la valeur prescrite

### Manuel (modèle de base)



### Dispositif de réglage manuel avec aiguille de réglage, graduation et dispositif d'arrêt :

Les valeurs prescrites de débit volumique sont paramétrées manuellement grâce à l'aiguille de réglage entre  $\dot{V}_{min}$  et  $\dot{V}_{max}$ . Les régulateurs sont ajustés en usine pour l'ensemble de la plage de débit volumique.

Le modèle VR1-N peut être livré préréglé en usine. Pour cela, fournir les valeurs prescrites de débit volumique au moment de la commande. Il est possible d'effectuer un réglage ultérieur sur place.

La livraison inclut le pré-montage en usine.

### Motorisé (modèle en option)



### м1 ·

Transmission réversible 230 V CA avec commande à 2 et 3 points.

Les suspensions du moteur correspondantes sont positionnées pour procéder au réglage des débits volumiques.

Accessoire en option pré-monté en usine ou à monter sur place

### M2 :

Transmission réversible 24 V CA/CC avec commande à 2 et 3 points.

Les suspensions du moteur correspondantes sont positionnées pour procéder au réglage des débits volumiques.

Accessoire en option pré-monté en usine ou à monter sur place

### M3 :

Transmission réversible réglable en permanence 24 V CA/CC

Un signal pilote compris entre 0...10 V est utilisé pour procéder au réglage des débits volumiques.

Accessoire en option pré-monté en usine ou à monter sur place

Pour en savoir plus, voir ▶ Page 16.





**Coque isolante avec revêtement en tôle** pour réduire le rayonnement extérieur de la coque du régulateur de débit (bruit rayonné).

Accessoire en option pré-monté en usine ou à monter sur place

Pour en savoir plus, voir ▶ Page 7.

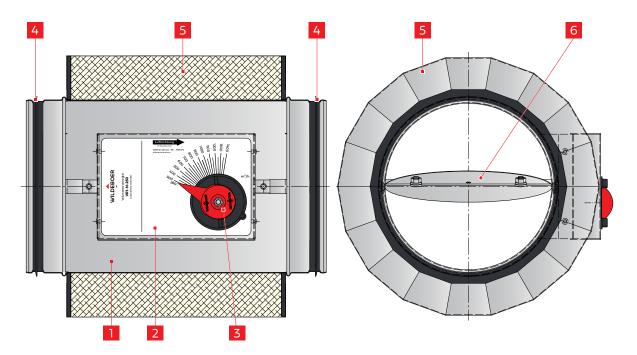


Silencieux circulaire SRC pour réduire les bruits d'écoulement dans la conduite d'aération raccordée. Épaisseur du colis : 50 mm de laine minérale

Longueurs:

- 600 mm
- 900 mm

Accessoire en option à monter sur place


Pour en savoir plus, voir ▶ Page 7.

### 3 Description du produit

Le régulateur de débit VR1-N est fabriqué en acier galvanisé. Le volet de régulation du débit est disposé au centre et inséré dans des douilles de palier spéciales à l'aide d'axes de palier en acier inoxydable. Le dispositif de réglage manuel est équipé d'une aiguille de réglage, d'une graduation et d'un dispositif d'arrêt. Les valeurs prescrites de débit volumique sont ajustables de manière manuelle ou motorisée dans la plage de débit volumique comprise entre  $\dot{V}_{max}$ .

La mécanique de réglage spéciale garantit une précision de réglage élevée, de façon à ce que le débit volumique soit maintenu constant en cas de pressions variables sur l'ensemble de la plage de pression.

Les valeurs prescrites de débit volumique ajustables dépendent du diamètre nominal du VR1-N.



| Position | Description                                                                                |
|----------|--------------------------------------------------------------------------------------------|
| 1        | Boîtier du tuyau                                                                           |
| 2        | Autocollant indiquant la graduation et le sens de l'air                                    |
| 3        | Dispositif de réglage manuel avec aiguille de réglage,<br>graduation et dispositif d'arrêt |
| 4        | Joint à lèvre (en option)                                                                  |
| 5        | Coque isolante avec revêtement en tôle (en option)                                         |
| 6        | Volet                                                                                      |

| Dimension [DN] | V <sub>min</sub> [m³/h] | V̇ <sub>max</sub> [m³/h] |
|----------------|-------------------------|--------------------------|
| 80             | 30                      | 220                      |
| 100            | 40                      | 300                      |
| 125            | 70                      | 440                      |
| 160            | 100                     | 625                      |
| 200            | 125                     | 850                      |
| 250            | 280                     | 1 400                    |
| 315            | 400                     | 2 300                    |

### 3.1 Domaine d'application

Le régulateur de débit VR1-N est utilisé dans les conduites d'air frais et d'air vicié d'installations de technique d'air ambiant.

### Remarques

- · Le régulateur de débit VR1-N est ajusté pour le domaine d'application complet et gradué.
- Le réglage de la valeur prescrite de débit volumique a lieu lors du montage en tournant l'aiguille de réglage sur la valeur prescrite souhaitée de la graduation et en bloquant ce réglage à l'aide du dispositif d'arrêt. La précision de réglage reste inchangée.
- Le régulateur de débit préréglé en usine peut être monté directement. Il est possible de réaliser une modification ultérieure de la valeur prescrite de débit volumique en désactivant le dispositif d'arrêt.
- Le régulateur de débit VR1-N et le silencieux circulaire SRC disponible en option sont livrés séparément. L'assemblage est réalisé par le maître d'œuvre.
- · Une notice d'utilisation et d'installation du VR1-N est disponible en ligne à l'adresse www.wildeboer.de.

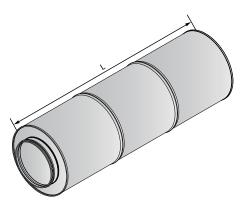
### 3.2 Fonctionnement

Le régulateur de débit VR1-N fonctionne sans énergie auxiliaire. Le flux d'air présent dans la conduite d'aération génère un couple de rotation dans le sens de fermeture lorsqu'il rencontre le volet. Ce couple est compensé par le couple de rappel d'un volet de manière à ce que le débit volumique compris dans les tolérances puisse être maintenu constant, même en cas de modification des différences de pression. Pour cela, un soufflet d'amortissement supplémentaire veille à assurer un mouvement du volet exempt d'oscillations.

### 3.3 Accessoires

### 3.3.1 Coque isolante avec revêtement en tôle

La coque isolante avec revêtement en tôle est montée en usine ou livrée pour un montage sur place.




Réduction maximale possible des bruits rayonnés selon le diamètre nominal :

| DN  | Réduction |
|-----|-----------|
| 80  |           |
| 100 |           |
| 125 |           |
| 160 | -18 dB    |
| 200 |           |
| 250 |           |
| 315 |           |

### 3.3.2 Silencieux circulaire SRC

Le silencieux circulaire SRC est livré séparément. L'assemblage avec le régulateur de débit est réalisé par le maître d'œuvre.



Réduction maximale possible des bruits d'écoulement selon la longueur du silencieux :

| DN  | Diamètre extérieur | L [n   | nm]    |
|-----|--------------------|--------|--------|
| DN  | [mm]               | 600    | 900    |
| 80  | 200                | -22 dB | -      |
| 100 | 200                | -22 dB | -25 dB |
| 125 | 225                | -22 dB | -25 dB |
| 160 | 260                | -21 dB | -24 dB |
| 200 | 300                | -19 dB | -24 dB |
| 250 | 355                | -18 dB | -22 dB |
| 315 | 415                | -15 dB | -19 dB |

Épaisseur du colis : 50 mm de laine minérale

### 4 Dimensionnement rapide

Le dimensionnement rapide indique le niveau de puissance acoustique attendu du VR1-N. Afin de réaliser une estimation approximative, il est possible d'interpoler les valeurs intermédiaires. Les valeurs précises des diverses pressions différentielles peuvent être extraites du logiciel de dimensionnement WiDim de Wildeboer. • WiDim

### Niveau acoustique

| Dimension | Débit<br>volumique  | Vitesse<br>d'écoulement | Pression<br>différentielle | Bruit d'écoulement                                                      | Bruit rayonné                                                               |
|-----------|---------------------|-------------------------|----------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| [DN]      | <sup>'</sup> [m³/h] | ∨ [m/s]                 | Δp <b>[Pa]</b>             | Niveau de puissance acoustique $L_{\scriptscriptstyle WA} [{ m dB(A)}]$ | Niveau de puissance acoustique $L_{\scriptscriptstyle \mathrm{WA}}$ [dB(A)] |
| 80        | 30                  | 1,7                     | 50                         | 32                                                                      | < 20                                                                        |
| 80        | 125                 | 6,9                     | 30                         | 43                                                                      | 29                                                                          |
| 80        | 220                 | 12,2                    | 100                        | 48                                                                      | 40                                                                          |
| 100       | 40                  | 1,4                     | 50                         | 32                                                                      | < 20                                                                        |
| 100       | 170                 | 6,0                     | 50                         | 44                                                                      | 25                                                                          |
| 100       | 300                 | 10,6                    | 100                        | 49                                                                      | 37                                                                          |
| 125       | 70                  | 1,6                     | 50                         | 34                                                                      | < 20                                                                        |
| 125       | 255                 | 5,8                     | 50                         | 45                                                                      | 30                                                                          |
| 125       | 440                 | 10,0                    | 100                        | 50                                                                      | 38                                                                          |
| 160       | 100                 | 1,4                     | 50                         | 35                                                                      | 22                                                                          |
| 160       | 360                 | 5,0                     | 50                         | 45                                                                      | 32                                                                          |
| 160       | 625                 | 8,6                     | 100                        | 50                                                                      | 35                                                                          |
| 200       | 125                 | 1,1                     | 50                         | 35                                                                      | 27                                                                          |
| 200       | 500                 | 4,4                     | 50                         | 46                                                                      | 34                                                                          |
| 200       | 850                 | 7,5                     | 100                        | 51                                                                      | 37                                                                          |
| 250       | 280                 | 1,6                     | 50                         | 40                                                                      | 22                                                                          |
| 250       | 840                 | 4,8                     | 50                         | 48                                                                      | 33                                                                          |
| 250       | 1400                | 7,9                     | 125                        | 52                                                                      | 37                                                                          |
| 315       | 400                 | 1,4                     | 50                         | 41                                                                      | 24                                                                          |
| 315       | 1 350               | 4,8                     | 50                         | 50                                                                      | 37                                                                          |
| 315       | 2 300               | 8,2                     | 125                        | 54                                                                      | 42                                                                          |

Les niveaux de puissance acoustique du bruit rayonné peuvent être davantage réduits en utilisant une coque isolante.

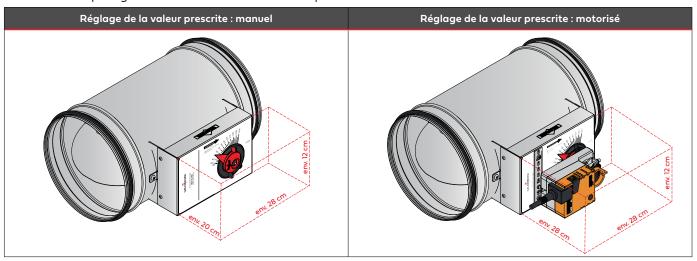
Le niveau de pression acoustique de la pièce se situe en moyenne pour les équipements :

- avec coque isolante, à 26 dB de moins
- · sans coque isolante, à **8 dB** de moins

par rapport au niveau de puissance acoustique  $\mathsf{L}_{\mathsf{WA}}$  indiqué dans les nomogrammes.

L'installation d'autres dispositifs d'isolation acoustique (plafonds suspendus, isolation ambiante élevée) peut permettre une réduction supplémentaire du niveau de pression acoustique de la pièce.

L'isolation acoustique de la coque isolante est néanmoins uniquement efficace lorsque les conduites d'aération raccordées sont isolées en conséquence.

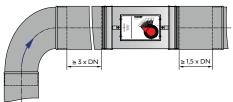

Le niveau de puissance acoustique du **bruit d'écoulement** peut être réduit de **25 dB** maximum en utilisant un silencieux circulaire SRC. ▶ Page 7

### 5 Montage

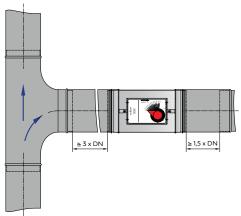
Le montage du régulateur de débit VR1-N est réalisé indépendamment de la position et dans le sens de l'air indiqué sur l'étiquette. Afin de garantir un fonctionnement et une étanchéité durables, il convient de procéder à un montage sans tension dans les conduites d'aération.

### Réserve de place

Pour assurer la lecture de la graduation et les opérations de mise en service et d'entretien, il convient de prévoir une réserve de place suffisante dans la zone des composants. Le cas échéant, les ouvertures de révision doivent être dimensionnées pour garantir la facilité d'accès aux composants.




### 5.1 Distance avec les points de défaillance


La précision de réglage indiquée  $\Delta \dot{V}$  est valable pour un écoulement droit et exempt de défaillances. Les pièces telles que les arcs, branchements ou modifications de section provoquent des défaillances susceptibles d'influer sur la mesure du débit volumique.

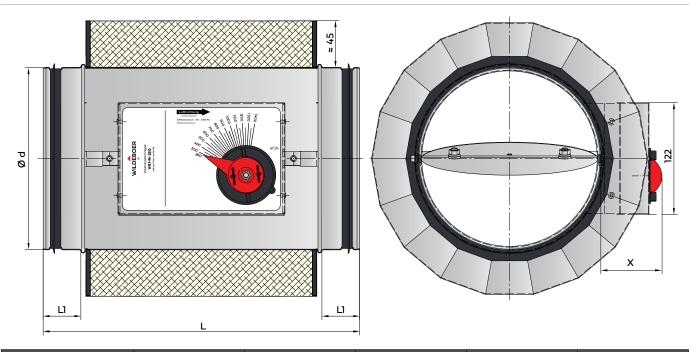
Un fonctionnement optimal du régulateur de débit VR1-N implique des écoulements aussi fluides que possible. En aval des points de défaillance d'écoulement (par ex. arcs ou branchements), respecter les segments d'entrée et de sortie droits indiqués en exemple ; des points de défaillance successifs nécessitent le cas échéant de plus longs segments d'entrée. Dans le cas contraire, des écarts de régulation plus importants sont à prévoir.

### Raccordement du coude



### Dérivation du conduit principal

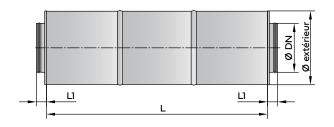



La précision de réglage indiquée  $\Delta\dot{V}$  peut être atteinte uniquement avec au moins 3 x DN de segment d'écoulement droit.

### Remarque:

Pour la réalisation de raccordements de conduites d'aération, respecter la norme EN 1506.

| Informations générales                  |                                                                                                               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Diamètre nominal                        | DN 80, DN 100, DN 125, DN 160, DN 200, DN 250, DN 315                                                         |
| Plage de débit volumique                | 30 2 300 m³/h                                                                                                 |
| Plage de régulation                     | env. 13 100 % du débit volumique nominal                                                                      |
| Précision de réglage                    | env. ± 5 % du débit volumique nominal ou ± 10 % du débit volumique prescrit (en fonction du plus grand écart) |
| Plage de pression différentielle        | 30 600 Pa                                                                                                     |
| Vitesse d'écoulement                    | 1,1 12,2 m/s                                                                                                  |
| Température de fonctionnement           | -20 +70 °C, temporairement +90 °C                                                                             |
| Humidité de l'air relative              | ≤ 95 %, sans condensation                                                                                     |
| Étanchéité du boîtier selon DIN EN 1751 | Classe C                                                                                                      |
| Modèle sans entretien                   | Oui                                                                                                           |
| Matériaux                               |                                                                                                               |
| Boîtier + volet                         | Acier galvanisé                                                                                               |
| Axes de palier                          | Acier inoxydable                                                                                              |


### 6.1 Dimensions



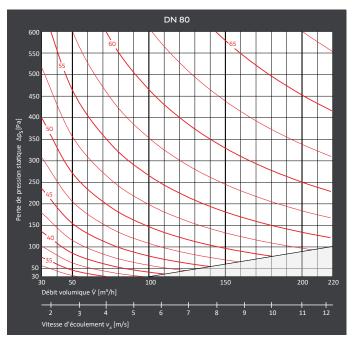
| Diamètre nominal [DN] | Ød [mm] | L [mm] | L1 [mm] | X                                         | $A_{_{A}}[m^2]$ |
|-----------------------|---------|--------|---------|-------------------------------------------|-----------------|
| 80                    | 79      | 329    | 40      | Manuel :<br>65 mm<br>Motorisé :<br>130 mm | 0,005           |
| 100                   | 99      | 329    | 40      |                                           | 0,008           |
| 125                   | 124     | 329    | 40      |                                           | 0,012           |
| 160                   | 159     | 329    | 40      |                                           | 0,020           |
| 200                   | 199     | 329    | 40      |                                           | 0,031           |
| 250                   | 249     | 407    | 60      |                                           | 0,049           |
| 315                   | 314     | 457    | 60      |                                           | 0,078           |

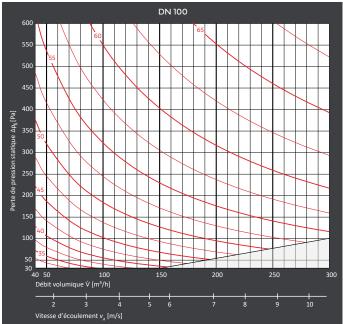
Régulateur de débit VR1-N

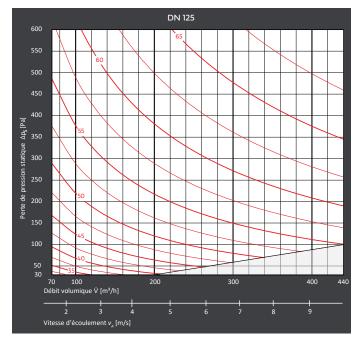
### 6.1.1 Silencieux circulaire SRC

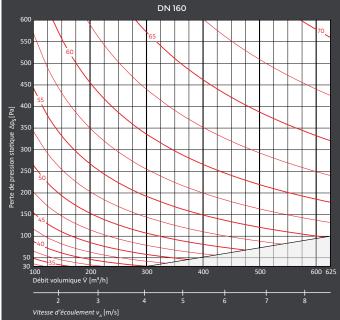


| Dimension<br>[DN] | Ø extérieur [mm] | L [mm] |     | L1 [mm] |
|-------------------|------------------|--------|-----|---------|
| 80                | 200              |        | -   |         |
| 100               | 200              |        |     | 40      |
| 125               | 225              |        | 000 |         |
| 160               | 260              | 600    |     |         |
| 200               | 300              |        | 900 |         |
| 250               | 355              |        |     |         |
| 315               | 415              |        |     |         |


### 6.2 Poids


| Diamaktura manain al [DN] | VD1 NI [1] | Commission to [log] | 7-1-4 > 1> []     | Silencieux circ | ulaire SRC [kg] |
|---------------------------|------------|---------------------|-------------------|-----------------|-----------------|
| Diamètre nominal [DN]     | VR1-N [kg] | Coque isolante [kg] | Joint à lèvre [g] | 600 mm          | 900 mm          |
| 80                        | 1,13       | 0,73                | 20                | 3,00            | -               |
| 100                       | 1,24       | 0,88                | 26                | 3,80            | 5,70            |
| 125                       | 1,39       | 1,07                | 32                | 4,50            | 6,30            |
| 160                       | 1,60       | 1,33                | 40                | 5,10            | 7,80            |
| 200                       | 1,88       | 1,84                | 52                | 6,20            | 10,00           |
| 250                       | 3,26       | 2,45                | 64                | 7,80            | 11,50           |
| 315                       | 4,37       | 3,60                | 88                | 9,10            | 13,10           |

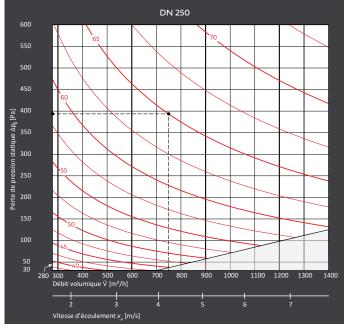

| Entraînement | Poids [g] |  |
|--------------|-----------|--|
| M1           | 660       |  |
| M2           | 660       |  |
| M3           | 630       |  |

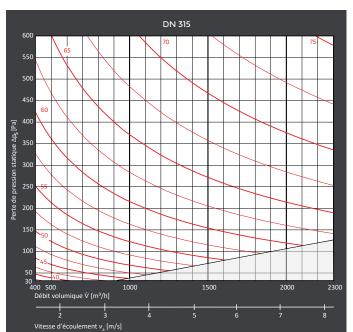

### 6.3 Niveau de puissance acoustique (bruit d'écoulement)

Niveau de puissance acoustique  $L_{WA}$  [dB(A)]








Régulateur de débit VR1-N

### Niveau de puissance acoustique $L_{WA}$ [dB(A)]







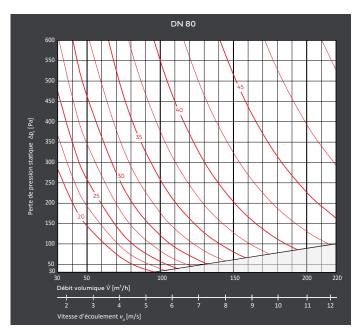
### Exemple:

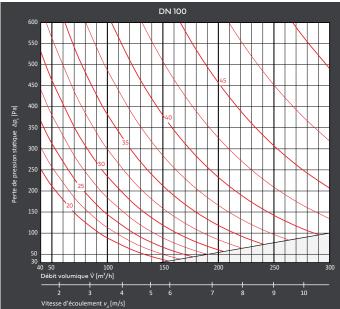
Étant donné que : Dimension DN 250

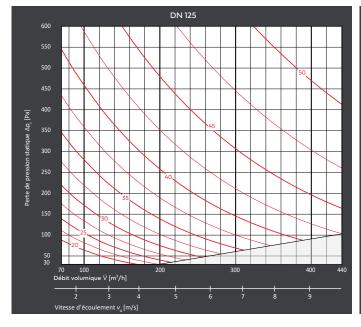
Débit volumique  $\dot{V}=750~\text{m}^3/\text{h}$ Vitesse d'écoulement  $v_A=4,25~\text{m/s}$ Perte de pression statique  $\Delta p_c=395~\text{Pa}$ 

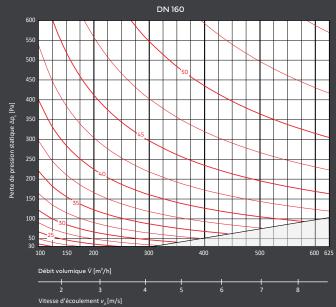
On obtient : Bruit d'écoulement

Niveau de puissance acoustique  $L_{WA} = 65$  dB(A)


- Le niveau de puissance acoustique du bruit d'écoulement peut être davantage réduit en utilisant un silencieux circulaire SRC.
   Informations complémentaires Page 7.
- Le calcul du niveau de puissance acoustique dans la conduite de raccordement est réalisé dans les nomogrammes comme niveau total L<sub>wa</sub> noté A.
- Le niveau de puissance acoustique correspondant en octaves L<sub>W-oct</sub> est calculé pour chaque dimension et pour l'ensemble des points de fonctionnement à partir du logiciel de dimensionnement > WiDim de Wildeboer; tout comme la conception équipée d'un silencieux circulaire SRC supplémentaire.
- Attention: le niveau acoustique est indiqué sous forme de performance acoustique dans les nomogrammes!
   Les données indiquent l'énergie acoustique qui pénètre dans les canaux. Elles doivent servir au calcul acoustique, par ex. en cas d'ajouts de silencieux.
- À noter: dans plusieurs cas, les niveaux de pression acoustique L<sub>p</sub> ou L<sub>pA</sub> avec un amortissement standard jusqu'à 16 dB sont indiqués. Si l'on compare les valeurs chiffrées, il convient d'observer systématiquement la différence entre le niveau de puissance acoustique et le niveau de pression acoustique ! En outre, le niveau d'amortissement se calcule uniquement selon les conduites, déviations, jonctions et pièces effectivement raccordées.

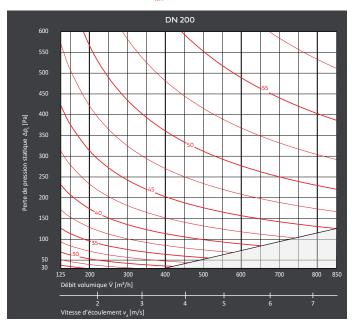

### Légende

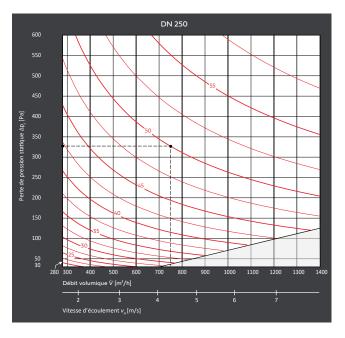

| Legen              | ue                  |                                                      |
|--------------------|---------------------|------------------------------------------------------|
| Ÿ                  | [m <sup>3</sup> /h] | Débit volumique                                      |
| $A_{_A}$           | $[m^2]$             | Section d'écoulement                                 |
| $V_A$              | [m/s]               | Vitesse d'écoulement en A                            |
| $\Delta p_s$       | [Pa]                | Perte de pression statique                           |
| $\Delta p$         | [Pa]                | Pression différentielle                              |
| $L_{WA}$           | [dB(A)]             | Niveau de puissance acoustique noté A                |
| L <sub>W-oct</sub> | [dB]                | Niveau de puissance acoustique en octaves            |
| ** 000             |                     | $L_{W-oct} = L_{WA} + \Delta L$                      |
| $\Delta L$         | [dB]                | Niveau de puissance acoustique relatif pour $L_{WA}$ |
| f                  | [Hz]                | Fréquence centrale d'octave                          |
| L                  | [dB]                | Niveau de pression acoustique                        |
| L                  | [dB(A)]             | Niveau de pression acoustique noté A                 |

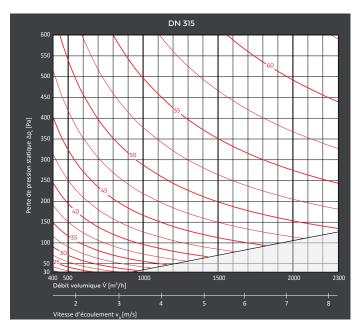

### 6.4 Niveau de puissance acoustique (bruit rayonné)

Niveau de puissance acoustique  $L_{WA}$  [dB(A)]






Régulateur de débit VR1-N

### Niveau de puissance acoustique $L_{WA}$ [dB(A)]







### Exemple:

Étant donné que : Dimension DN 250

Débit volumique  $\dot{V}=750~\text{m}^3/\text{h}$ Vitesse d'écoulement  $v_{_A}=4,25~\text{m/s}$ Perte de pression statique  $\Delta p_{_S}=340~\text{Pa}$ 

On obtient : Bruit rayonné

Niveau de puissance acoustique  $L_{WA} = 50$  dB(A)

- Les niveaux de puissance acoustique du bruit rayonné peuvent être davantage réduits en utilisant la coque isolante.
  - Informations complémentaires > Page 7.
- L'installation d'autres dispositifs d'isolation acoustique (plafonds suspendus, isolation ambiante élevée) peut permettre une réduction supplémentaire du niveau de pression acoustique.

### Légende

| 9                               |                     |                                                      |
|---------------------------------|---------------------|------------------------------------------------------|
| Ÿ                               | [m <sup>3</sup> /h] | Débit volumique                                      |
| $A_{\scriptscriptstyle \Delta}$ | [m²]                | Section d'écoulement                                 |
| $V_A$                           | [m/s]               | Vitesse d'écoulement en A                            |
| $\Delta p_s$                    | [Pa]                | Perte de pression statique                           |
| $\Delta p$                      | [Pa]                | Pression différentielle                              |
| $L_{WA}$                        | [dB(A)]             | Niveau de puissance acoustique noté A                |
| L <sub>W-oct</sub>              | [dB]                | Niveau de puissance acoustique en octaves            |
|                                 |                     | $L_{W-oct} = L_{WA} + \Delta L$                      |
| $\Delta L$                      | [dB]                | Niveau de puissance acoustique relatif pour $L_{WA}$ |
| f                               | [Hz]                | Fréquence centrale d'octave                          |
| L                               | [dB]                | Niveau de pression acoustique                        |
| $L_{p\Delta}^{r}$               | [dB(A)]             | Niveau de pression acoustique noté A                 |

Régulateur de débit VR1-N

### 6.5 Réglage de la valeur prescrite

### 6.5.1 Manuel

Le modèle de base du régulateur de débit VR1-N est prévu pour un réglage manuel de la valeur prescrite de débit volumique et fonctionne sans énergie auxiliaire. La valeur prescrite de débit volumique est pré-sélectionnée sur un dispositif de réglage gradué et maintenue constante en cas de pressions variables avec une grande précision. Les régulateurs de débit sont ajustés en usine pour l'ensemble de la plage de débit volumique.

### 6.5.2 Motorisé

En option, le réglage de la valeur prescrite peut être effectué de manière motorisée via des entraînements électriques installés en usine. Pour cela, des transmissions réversibles et des transmissions réversibles réglables en permanence sont mises à disposition.

|          | e et<br>sion de | Raccordement électrique |                 |                 |                              | Puissance                    | Durée de<br>fonctionnement<br>à 90° | Réglage      |                                       |
|----------|-----------------|-------------------------|-----------------|-----------------|------------------------------|------------------------------|-------------------------------------|--------------|---------------------------------------|
| l'entraî | nement          | Tension                 | Tolérance<br>CA | Tolérance<br>CC | Puissance de<br>raccordement | Fils                         | Marche                              | Entraînement | manuel                                |
| MI       |                 | 230 V CA                | 85 265 V        | -               | 3,5 VA                       | 3 x 0,75 mm²,                | 1,5 W                               |              |                                       |
| M2       | 5 Nm            | 24 V CA/CC              | 19,2            | 28,8 V          | 1,5 VA                       | 1 m de long                  | 1 W                                 | < 150 s      | Bouton-<br>poussoir,<br>verrouillable |
| М3       | М3              | 24 V CA/CC              | 19,2 28,8 V     |                 | 2 VA                         | 4 x 0,75 mm²,<br>1 m de long | 12,                                 | Verroom      | verroomable                           |

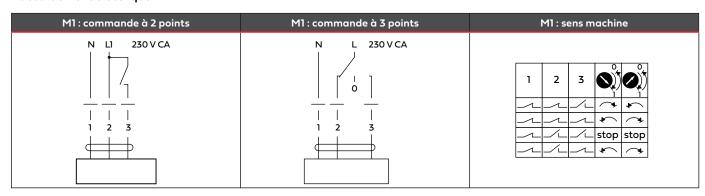
Les transmissions réversibles (M1, M2) ouvrent et ferment le régulateur de débit avec une tension alternative de 230 V ou une tension alternative ou continue de 24 V.

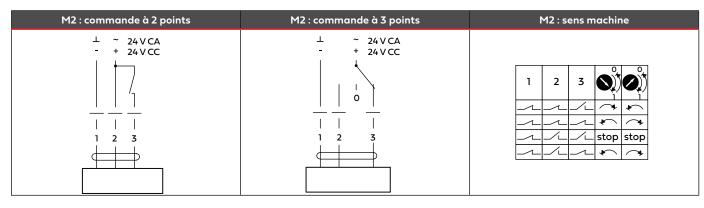
Les transmissions **M1** (230 V CA) et **M2** (24 V CA/CC) permettent une commande à 2 et 3 points. Les suspensions du moteur correspondantes sont positionnées pour procéder au réglage des deux débits volumiques. À la livraison, les deux butées des transmissions sont réglées sur le sens machine 0 et sur le plus grand angle de rotation possible. L'angle de rotation maximal correspond à la plus grande valeur prescrite de débit volumique possible, l'angle minimal correspond au « blocage » sur une fuite résiduelle nettement en deçà de la valeur prescrite de débit volumique minimale. Une extension à la commande à 3 points s'obtient en utilisant également un circuit 0. Ainsi commandée, la transmission reste en position temporaire et le régulateur de débit VR1-N règle la valeur prescrite correspondante.

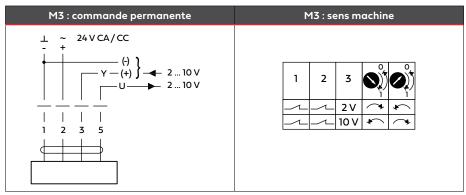
La **transmission réversible réglable en permanence (M3)** 24 V CA/CC paramètre le régulateur de débit dans toutes les positions souhaitées. La consigne de position est donnée via un signal pilote de 0 ou 2 à 10 V, un retour de position via un signal de sortie de 2 à 10 V.

La transmission **M3** (24 V CA/CC) permet d'effectuer un réglage permanent de la valeur prescrite. La transmission est commandée via une tension de réglage Y = 0 ... 10 V CC et avance dans la position indiquée par le signal de réglage ; pour cela, la plage d'opération du moteur démarre néanmoins uniquement à 2 V. La valeur prescrite de débit volumique varie de manière quasiment linéaire avec la tension de réglage. Lors de la livraison, la transmission est réglée sur le sens machine 0 et les butées mécaniques réglables sont paramétrées sur le plus grand angle de rotation possible de manière à ce que pour Y = 10 V, l'angle de rotation maximal corresponde à la valeur prescrite de débit volumique maximale et pour 0 ... 2 V, l'angle de rotation minimal soit atteint. Celui-ci correspond au « blocage » sur une fuite résiduelle nettement en deçà de la valeur prescrite de débit volumique minimale. La tension de retour U = 2 ... 10 V CC permet l'affichage électrique du réglage de la valeur prescrite de débit volumique et sert de signal de réglage de suivi aux autres transmissions.

### Remarques


- Tous les entraînements motorisés résistent à la surcharge, ne nécessitent pas d'interrupteur de fin de course et restent automatiquement en butée.
- · En cas de panne ou de coupure de tension, la position d'entraînement temporaire reste inchangée.
- · Le sens machine de tous les entraînements motorisés peut être inversé à l'aide d'un bouton-poussoir situé sur le moteur.


### Pré-réglage


Selon le diamètre nominal, il est possible de pré-régler en usine la valeur prescrite de débit volumique pour les incréments suivants.

| Diamètre nominal [DN] | Valeur prescrite de débit<br>volumique <sub>min</sub> | Valeur prescrite de débit<br>volumique <sub>max</sub> | Incrément |  |
|-----------------------|-------------------------------------------------------|-------------------------------------------------------|-----------|--|
| 80                    | 30                                                    | 220                                                   | 10        |  |
| 100                   | 40                                                    | 300                                                   | 10        |  |
| 125                   | 75                                                    | 425                                                   | 25        |  |
| 160                   | 100                                                   | 625                                                   | 25        |  |
| 200                   | 125                                                   | 850                                                   | 25        |  |
| 250                   | 300                                                   | 1400                                                  | 50        |  |
| 315                   | 400                                                   | 2 300                                                 | 100       |  |

### Raccordement électrique







### 7 Texte d'appel d'offres

Régulateur de débit circulaire sans entretien pour montage indépendant de la position dans les conduites pour l'air frais et l'air vicié des installations de technique d'air ambiant avec faibles vitesses d'écoulement et pressions variables. Boîtier et mécanique de réglage en tôle d'acier galvanisé, avec coque isolante, avec joints à lèvre. Avec volet de régulation du débit disposé au centre, inséré dans des douilles de palier spéciales à l'aide d'un axe de palier en acier inoxydable. Dispositif de réglage avec aiguille de réglage, graduation et dispositif d'arrêt pour la valeur prescrite de débit volumique, réglable de manière manuelle/motorisée. Régulateur de débit de type régulateur mécanique pour débits volumiques constants sans énergie auxiliaire. Avec mécanique de réglage spéciale garantissant une précision de réglage élevée sur l'ensemble de la plage de régulation. La valeur prescrite de débit volumique doit être réglable en continu sur toute la plage de régulation. En cas de pressions variables entre 30 et 600 Pa, le débit volumique doit être maintenu constant avec un écart d'environ ±5 % par rapport au débit volumique nominal ou ± 10 % par rapport au débit volumique prescrit (en fonction du plus grand écart). Étanchéité du boîtier classe C selon DIN EN 1751. Certificat en tant que justificatif de conformité aux exigences en matière d'hygiène, conformément à VDI 6022-1, VDI 3803-1, DIN 1946-4, DIN EN 16798-3, SWKI VA104-01, SWKI VA105-01, ÖNORM H6020 et ÖNORM H6021. Avec déclaration environnementale de produit selon ISO 14025 et EN 15804.

| ••••• | pièce(s)                                    |              |            |  |
|-------|---------------------------------------------|--------------|------------|--|
|       | Débit volumique :                           |              | m³/h       |  |
|       | Perte de pression :                         |              | Pa         |  |
|       | Niveau de puissance a<br>Bruit d'écoulement | -            |            |  |
|       | y compris silencieux Bruit rayonné          |              |            |  |
|       | Marque :                                    | WILDEBOER    |            |  |
|       | Type :                                      | VR1-N        |            |  |
|       | Dimension :                                 |              |            |  |
|       | En intégralité avec f                       | ïxations     | à livrer : |  |
|       |                                             | à monter :   |            |  |
|       | pièce(s) silencieux c                       | irculaire SR | C 600/900  |  |
|       |                                             | à livrer :   |            |  |
|       |                                             | à monter :   |            |  |
|       |                                             |              |            |  |

Barrer les indications qui ne sont pas en gras si nécessaire.

Le présent texte d'appel d'offres est disponible sur le site www.ausschreiben.de ▶ ausschreiben.de.
Vous pouvez également vous servir du texte d'appel d'offres adapté à votre sélection de produits dans le configurateur Wildeboer
▶ Configurateur Wildeboer.

### 8 Wildeboer facilite vos démarches

### 8.1 Configurateur Wildeboer



- · Configuration rapide et intuitive des produits Wildeboer
- Calcul simplifié des données de point de fonctionnement pour les produits configurés
- Représentation 3D des produits et téléchargement disponible dans plusieurs formats
- Téléchargement de fiches techniques, de textes d'appel d'offres et de clés de variantes
- Espace de connexion avec possibilité d'affichage des tarifs individuels



### 8.2 Logiciel de dimensionnement WiDim

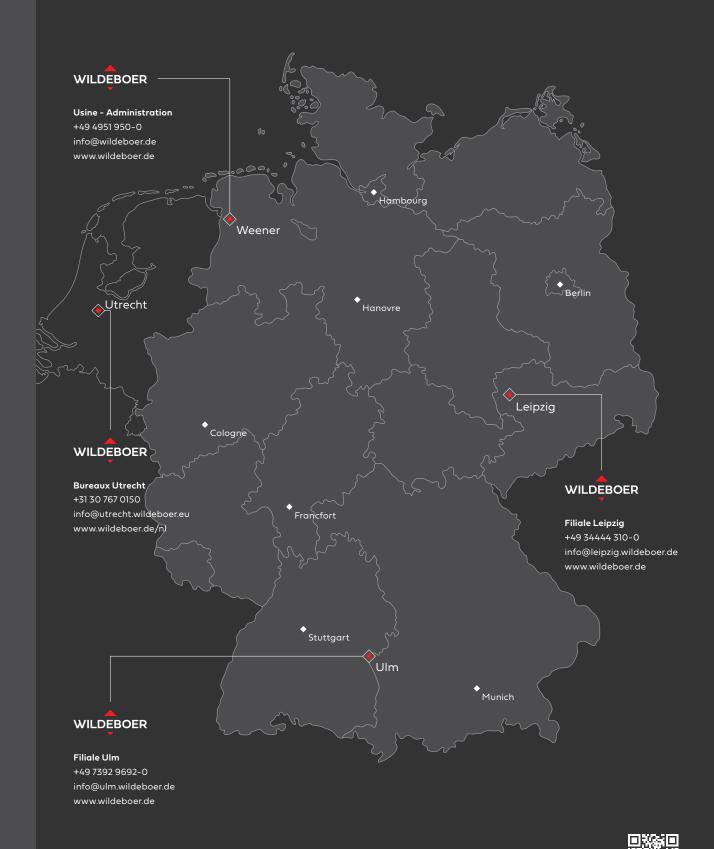


- Dimensionnement fonctionnel, moderne et intuitif des produits Wildeboer
- Regroupe les données de point de fonctionnement, les représentations 3D des produits, les accessoires adaptés et les documents de révision actuels en un seul projet
- Publication du projet disponible dans plusieurs formats
- Une interface GAEB et une interface basée sur la norme VDI 3805 assurent un processus de planification uniforme.



### 8.3 Documents en ligne




- Accès en ligne aux documents Wildeboer : respectueux de l'environnement (zéro papier)
- Tous les documents disponibles à un emplacement central et toujours actuels
- Prise en charge des formats et contenus interactifs



# c6584.003.011-12 vrl-n ahb 3.11 fr 00-01

# Toujours à vos côtés

Sites et contact













